Identification, In Vitro Testing and Molecular Docking Studies of Microginins' Mechanism of Angiotensin-Converting Enzyme Inhibition.

نویسندگان

  • Fernanda C R Paiva
  • Glaucio Monteiro Ferreira
  • Gustavo H G Trossini
  • Ernani Pinto
چکیده

Cyanobacteria are able to produce a wide range of secondary metabolites, including toxins and protease inhibitors, with diverse biological activities. Microginins are small linear peptides biosynthesized by cyanobacteria species that act against proteases. The aim of this study was to isolate and identify microginins produced by the LTPNA08 strain of Microcystis aeruginosa, as well as to verify their potential to inhibit angiotensin-converting enzyme (ACE; EC. 3.4.15.1) using in vitro and in silico methods. The fractionation of cyanobacterial extracts was performed by liquid chromatography and the presence of microginins was monitored by both LC-MS and an ACE inhibition assay. Enzyme inhibition was assayed by ACE with hippuryl-histidyl-leucine as the substrate; monitoring of hippuric acid was performed by HPLC-DAD. Isolated microginins were confirmed by mass spectrometry and were used to carry out the enzymatic assay. Molecular docking was used to evaluate microginin 770 (MG 770) and captopril (positive control), in order to predict similar binding interactions and determine the inhibitory action of ACE. The enzyme assay confirmed that MG 770 can efficiently inhibit ACE, with an IC50 equivalent to other microginins. MG 770 presented with comparable interactions with ACE, having features in common with commercial inhibitors such as captopril and enalaprilate, which are frequently used in the treatment of hypertension in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Study of 1, 3 Substituted Isatin Derivatives with Anti Inflammatory Properties with Cyclooxygenase 1 and 2 Enzymes by Molecular Docking Method

Introduction: Inflammation as the body's defense response is accompanied with various diseases. Prostaglandins are major mediators of inflammation produced by the cyclooxygenase enzymes.  So inhibitors of these enzymes can be effective in treating inflammation. There are reports of inhibition of these enzymes by isatin derivatives to control inflammation. Isatin is a heterocyclic compound whose...

متن کامل

Inhibitors of Angiotensin-converting Enzyme or Blockers of Angiotensin-2 Receptor in COVID-19 Patients with Comorbid Cardiovascular or Pulmonary Diseases

  Following the skyrocketing spread of SARS-CoV-2 into almost all the countries over five continents, diverse clinical strategies are urgently needed to defeat its pandemic, considering that an magic-bullet antiviral vaccine or treatment is presently unavailable. WHO later proclaimed the viral outbreak as a pandemic. Despite this fast speed of the pandemic, any recommended treatment must first...

متن کامل

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

Serum Angiotensin Converting Enzyme in Patients with Psoriasis

Background: Controversial data concerning the elevation of serum angiotensin-converting enzyme in psoriasis are reported in the literature. In order to verify whether this abnormality exists in Iranian patients, we performed this study. Method: Serum angiotensin-converting enzyme level was measured in 40 psoriatics. According to clinical forms of psoriasis, patients were further divided into th...

متن کامل

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2017